Página InicialGruposDiscussãoMaisZeitgeist
Este sítio web usa «cookies» para fornecer os seus serviços, para melhorar o desempenho, para analítica e (se não estiver autenticado) para publicidade. Ao usar o LibraryThing está a reconhecer que leu e compreende os nossos Termos de Serviço e Política de Privacidade. A sua utilização deste sítio e serviços está sujeita a essas políticas e termos.
Hide this

Resultados dos Livros Google

Carregue numa fotografia para ir para os Livros Google.

Structural Equation Modeling: A Bayesian…
A carregar...

Structural Equation Modeling: A Bayesian Approach (edição 2007)

por Sik-Yum Lee (Autor)

MembrosCríticasPopularidadeAvaliação médiaDiscussões
7Nenhum(a)1,891,026Nenhum(a)Nenhum(a)
***Winner of the 2008 Ziegel Prize for outstanding new book of the year*** Structural equation modeling (SEM) is a powerful multivariate method allowing the evaluation of a series of simultaneous hypotheses about the impacts of latent and manifest variables on other variables, taking measurement errors into account. As SEMs have grown in popularity in recent years, new models and statistical methods have been developed for more accurate analysis of more complex data. A Bayesian approach to SEMs allows the use of prior information resulting in improved parameter estimates, latent variable estimates, and statistics for model comparison, as well as offering more reliable results for smaller samples. Structural Equation Modeling introduces the Bayesian approach to SEMs, including the selection of prior distributions and data augmentation, and offers an overview of the subject's recent advances. Demonstrates how to utilize powerful statistical computing tools, including the Gibbs sampler, the Metropolis-Hasting algorithm, bridge sampling and path sampling to obtain the Bayesian results. Discusses the Bayes factor and Deviance Information Criterion (DIC) for model comparison. Includes coverage of complex models, including SEMs with ordered categorical variables, and dichotomous variables, nonlinear SEMs, two-level SEMs, multisample SEMs, mixtures of SEMs, SEMs with missing data, SEMs with variables from an exponential family of distributions, and some of their combinations. Illustrates the methodology through simulation studies and examples with real data from business management, education, psychology, public health and sociology. Demonstrates the application of the freely available software WinBUGS via a supplementary website featuring computer code and data sets. Structural Equation Modeling: A Bayesian Approach is a multi-disciplinary text ideal for researchers and students in many areas, including: statistics, biostatistics, business, education, medicine, psychology, public health and social science.… (mais)
Membro:Dynafor
Título:Structural Equation Modeling: A Bayesian Approach
Autores:Sik-Yum Lee (Autor)
Informação:Wiley-Blackwell (2007), 458 pages
Colecções:SAGA
Avaliação:
Etiquetas:Nenhum(a)

Pormenores da obra

Structural Equation Modelling: A Bayesian Approach (Wiley Series in Probability and Statistics) por Sik-Yum Lee

Nenhum(a).

Nenhum(a)
A carregar...

Adira ao LibraryThing para descobrir se irá gostar deste livro.

Ainda não há conversas na Discussão sobre este livro.

Sem críticas
sem críticas | adicionar uma crítica
Tem de autenticar-se para poder editar dados do Conhecimento Comum.
Para mais ajuda veja a página de ajuda do Conhecimento Comum.
Título canónico
Título original
Títulos alternativos
Data da publicação original
Pessoas/Personagens
Locais importantes
Acontecimentos importantes
Filmes relacionados
Prémios e menções honrosas
Epígrafe
Dedicatória
Primeiras palavras
Citações
Últimas palavras
Nota de desambiguação
Editores da Editora
Autores de citações elogiosas (normalmente na contracapa do livro)
Língua original
DDC/MDS canónico

Referências a esta obra em recursos externos.

Wikipédia em inglês

Nenhum(a)

***Winner of the 2008 Ziegel Prize for outstanding new book of the year*** Structural equation modeling (SEM) is a powerful multivariate method allowing the evaluation of a series of simultaneous hypotheses about the impacts of latent and manifest variables on other variables, taking measurement errors into account. As SEMs have grown in popularity in recent years, new models and statistical methods have been developed for more accurate analysis of more complex data. A Bayesian approach to SEMs allows the use of prior information resulting in improved parameter estimates, latent variable estimates, and statistics for model comparison, as well as offering more reliable results for smaller samples. Structural Equation Modeling introduces the Bayesian approach to SEMs, including the selection of prior distributions and data augmentation, and offers an overview of the subject's recent advances. Demonstrates how to utilize powerful statistical computing tools, including the Gibbs sampler, the Metropolis-Hasting algorithm, bridge sampling and path sampling to obtain the Bayesian results. Discusses the Bayes factor and Deviance Information Criterion (DIC) for model comparison. Includes coverage of complex models, including SEMs with ordered categorical variables, and dichotomous variables, nonlinear SEMs, two-level SEMs, multisample SEMs, mixtures of SEMs, SEMs with missing data, SEMs with variables from an exponential family of distributions, and some of their combinations. Illustrates the methodology through simulation studies and examples with real data from business management, education, psychology, public health and sociology. Demonstrates the application of the freely available software WinBUGS via a supplementary website featuring computer code and data sets. Structural Equation Modeling: A Bayesian Approach is a multi-disciplinary text ideal for researchers and students in many areas, including: statistics, biostatistics, business, education, medicine, psychology, public health and social science.

Não foram encontradas descrições de bibliotecas.

Descrição do livro
Resumo Haiku

Ligações Rápidas

Capas populares

Avaliação

Média: Sem avaliações.

É você?

Torne-se num Autor LibraryThing.

 

Acerca | Contacto | LibraryThing.com | Privacidade/Termos | Ajuda/Perguntas Frequentes | Blogue | Loja | APIs | TinyCat | Bibliotecas Legadas | Primeiros Críticos | Conhecimento Comum | 155,792,455 livros! | Barra de topo: Sempre visível